Overview
Columns define the structure and data types of your tables. The Boltic Tables SDK provides comprehensive support for creating, reading, updating, and deleting columns with a wide variety of data types and constraints.
System Columns
When you create a table, Boltic automatically adds three system columns:
id- Primary key (auto-generated UUID)created_at- Timestamp when record was createdupdated_at- Timestamp when record was last modified
These columns cannot be deleted or modified and are automatically managed by the system.
Available Operations
Creating Columns
- Create Column - Add single or multiple columns to a table
- Field Types - Complete reference of all supported data types
Reading Columns
- List Columns - Retrieve all columns with filtering and pagination
- Get Column - Fetch specific column by name or ID
Modifying Columns
- Update Column - Modify column properties and constraints
- Delete Column - Remove columns from tables
Basic Usage
import { createClient } from "@boltic/sdk";
const client = createClient("your-api-key");
// Create a text column
await client.columns.create("products", {
name: "title",
type: "text",
is_nullable: false,
description: "Product title",
});
// List all columns
const { data: columns } = await client.columns.findAll("products");
// Get specific column
const { data: column } = await client.columns.findOne("products", "title");
// Update column
await client.columns.update("products", "title", {
description: "Updated product title",
});
Supported Field Types
Boltic Tables supports 13 different field types:
Text Fields
text- Basic text stringslong-text- Extended text contentemail- Email addresses with validationphone-number- Phone numbers with formattinglink- URLs and web links
Numeric Fields
number- General numeric valuescurrency- Monetary values with currency formatting
Other Types
checkbox- Boolean true/false valuesdropdown- Single or multiple selection from predefined optionsdate-time- Date and time valuesjson- Structured JSON datavector- Full precision vectors for AI/MLhalfvec- Half precision vectorssparsevec- Sparse vectors
Each field type has specific properties and validation rules. See the Field Types Reference for complete details.
Key Concepts
Column Properties
All columns support universal properties:
- Name - Unique identifier within the table
- Type - Data type determining storage and validation
- Nullable - Whether null values are allowed
- Unique - Enforce uniqueness constraint
- Indexed - Create database index for performance
- Default Value - Value for new records
Type-Specific Properties
Different field types have additional properties:
- Number:
decimals - Currency:
currency_format,decimals - Phone:
phone_format - Dropdown:
selectable_items,multiple_selections - Date-time:
date_format,time_format - Vector types:
vector_dimension
Constraints and Validation
- Column names must be alphanumeric
- Type conversions have compatibility rules
Next Steps
- Create your first column - Start with basic column creation
- Column Properties Reference - Complete property values and validation rules